Long-Term Nitrogen Addition Leads to Loss of Species Richness Due to Litter Accumulation and Soil Acidification in a Temperate Steppe

نویسندگان

  • Ying Fang
  • Fen Xun
  • Wenming Bai
  • Wenhao Zhang
  • Linghao Li
چکیده

BACKGROUND Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. METHODOLOGY/PRINCIPAL FINDINGS Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. CONCLUSIONS/SIGNIFICANCE Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N deposition scenario.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe.

Loss of plant diversity with increased anthropogenic nitrogen (N) deposition in grasslands has occurred globally. In most cases, competitive exclusion driven by preemption of light or space is invoked as a key mechanism. Here, we provide evidence from a 9-yr N-addition experiment for an alternative mechanism: differential sensitivity of forbs and grasses to increased soil manganese (Mn) levels....

متن کامل

Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling.

Plant species richness has declined and composition shifted in response to elevated atmospheric deposition of biologically active nitrogen over much of the industrialized world. Litter thickness, litter nitrogen (N) content, and soil N mineralization rates often remain elevated long after inputs cease, clouding the prospects that plant community diversity and composition would recover should N ...

متن کامل

Nitrogen effects on net ecosystem carbon exchange in a temperate steppe

It has widely been documented that nitrogen (N) enrichment stimulates plant growth and net primary production. However, there is still dispute on how N addition affects net ecosystem CO2 exchange (NEE), which represents the balance between ecosystem carbon (C) uptake and release. We conducted an experimental study to examine effects of N addition on NEE in a temperate steppe in northern China f...

متن کامل

Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field ...

متن کامل

Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter.

Saprotrophic fungi are the primary decomposers of plant litter in temperate forests, and their activity is critical for carbon (C) and nitrogen (N) cycling. Simulated atmospheric N deposition is associated with reduced fungal biomass, shifts in fungal community structure, slowed litter decay, and soil C accumulation. Although rarely studied, N deposition may also result in novel selective press...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012